Of the dozens of Corvettes famously linked to the astronauts of the moon-shot Sixties, only a handful of documented Apollo-era astronaut-owned‘Vettes survive, none of them as original as the 1967 Corvette once owned by the late Neil Armstrong. Now, thanks to a new initiative, that Corvette will undergo a preservation effort that will keep it just as Armstrong had it.
One of the many Corvettes that Florida Chevrolet dealer Jim Rathmann sold to those with the Right Stuff, Armstrong’s Marina Blue mid-year coupe emerged from the St. Louis assembly plant on December 9, 1966, and passed into his possession six days later. Equipped with the 390hp 427-cu.in. V-8, a four-speed transmission, air conditioning, power brakes, power windows, tinted windows, transistorized ignition, and the AM-FM radio, the coupe served Armstrong for the next year, until he traded it in at Rathmann Chevrolet for a 1968 Corvette convertible. A day later, a fellow NASA employee bought it, beginning a 44-year stretch of ownership that ended earlier this year when current owner Joe Crosby bought it.
Crosby, a Corvette restorer from Merritt Island, Florida, actually first got wind of the Corvette in the summer of 1979, when the second owner still had it on the road. “My brother and I both talked about buying it,” Crosby said. “At the time we didn’t know it had something to do with Neil Armstrong, we just knew that it was a big-block car with its original engine. All the Corvettes I’ve restored have had their original engines. But I had two other Corvettes I was working on at the time, so I passed.”
Regardless, he kept in touch with the second owner, calling him about once a year to chat and see if the Corvette was still for sale. At one point over the years the second owner revealed that Armstrong originally owned the Corvette, but the answer always remained no. In the meantime, the second owner moved the Corvette into a heated and air-conditioned garage and put it up on jackstands with the intentions of turning it into a family project. He modified it with fender flares, as was the fashion of the time, but got no farther with it.
Even up to late 2011, the second owner refused to sell, but then one day in late February he called Crosby and asked him if he still wanted to buy it. “It took me about five minutes to get the trailer ready to pick it up,” Crosby said. After getting it home, his initial assessment showed the Corvette to be in largely original condition, apart from the flares, thanks to its 31-year hibernation and the 38,000 miles on the odometer. “The rubber fuel hoses were like potato chips, dry and crumbling, but the gas tank was clean and shiny, and the spare tire had never been out of its carrier.” With careful pre-lubrication and some new lengths of fuel hose, the 427 actually fired up for Crosby. The water pump and mufflers had at some point been replaced, but for an experienced Corvette restorer like Crosby, finding date-coded replacements took little effort. Finding four NOS fenders, however, proved a challenge. “I took a six-week safari around the country to find four GM fenders,” he said. “I paid a fortune for them all, but I could not bring myself to get reproduction fenders if the real ones were still out there.”
As for authenticating the Corvette as Armstrong’s, Rathmann did keep files on all of his astronaut cars, but subsequent owners of the dealership destroyed those records. Still, Armstrong’s name appears on the Protect-O-Plate, and Crosby convinced Jack Legere, a friend of his who works at NASA, to show Armstrong Crosby’s photos of the Corvette during one of Armstrong’s periodic visits to Florida. “He immediately recalled it and grinned ear to ear,” Crosby said. “He didn’t have time then to check it out in person, and we all know what happened next.” Armstrong died in late August at the age of 82.
Up until this summer, Crosby intended to subject the Corvette to a full restoration, as he had with all of his other Corvettes, but then mid-year expert David Burroughs, a champion of original and preserved cars, convinced him to call preservationist Eric Gill of nearby Port Orange, Florida. Like Burroughs, Gill prefers preservation over restoration, particularly when it comes to cars with provenance, such as the Neil Armstrong Corvette. “Preservation is the cutting edge in the hobby right now,” Gill said. “The term is deceptive because some people think it just means sitting on the car, but we’re actually developing protocols for retaining the history of a car, as opposed to wiping away all that history in a restoration. A historically significant car is only as interesting as the people who gave it that history.”
After several conversations between Crosby and Gill, the two put together a team – including restorer/preservationist Allan Scheffling, videographer Chris Hoch, photographer Roger Kallins, and Legere – that will carefully document the Corvette as it sits now and identify steps to take in the coupe’s preservation. “I’m calling this a reactive preservation, which means that we have to react to a situation that exists that is inappropriate to the historical integrity of the car, in this case the fender flares,” Gill said. “We want to take it back to the condition it was in when Neil Armstrong traded it in.”
The hardest part of the preservation, Gill said, will be replacing the flares with sections of unflared fenders and then distressing the new paint over the replaced sections to harmonize with the existing paint. “We won’t be replacing the full fenders, which will inflate the number of hours we’ll have in the car, but will also give us the opportunity to disturb as little of the original paint as possible. We hope to do it in such a way that you can’t tell even though you know it’s been replaced.”
Crosby has since come around to Gill’s line of thinking, at least for this car. “Once you restore a car, you can’t ever go back to the way it was,” Crosby said. “Some people might see it as a beat-up old car, but people like us see that if you undo all that, it’s no longer Neil Armstrong’s car. This isn’t a car, it’s a piece of history, and the chance of having just one car like this is just astronomical.”
Due to the detailed nature of the process that Gill and his team have outlined, they have no set timeline, but they plan to post more information to their website, RecaptureThePast.com, and provide Hemmings Daily with updates to the preservation as it proceeds.
Few post back I mentioned the issues with being able to shift the C6 into reverse and then generally the shift began to get worse. Additionally the clutch fluid would become low.
As most Corvette owners know, the C6 has a separate hydraulic clutch. I had the fluid flushed numerous times and eventually we found a small leak at the clutch slave cylinder.
Replaced the cylinder and stopped the leak. This stopped the fluid usage and shifting improved, but only slightly.
Eventually it began getting much worse. With the ignition on the car would not go into reverse at all. The only way to get it into reverse was to turn the car off, put the that trans in reverse and start the car. Even then, it would sometimes kick itself out of gear when started Then highway shifting began slipping and RPM when up.
I do auto cross the car and I guess some spirited street driving. Here is what my clutch and flywheel now look like, yes… I saved them!!!
Clutch1
Clutch 2
Those shiny rivets – not a good thing!!!!
The Flywheel, interesting coloration, don’t you think?
One of my worse fears is to over heat a car, I’m talking almost phobia status for me. I’ve had it happen all too often, with my first car ’66 Impala and various cars I’ve owned. This includes a 1988 Toyota (new at the time). It makes a horrible mess and depending the composition of your it can warp heads and effects electrical work, under hood plastics and even paint.
Avoiding this in one of my number one goals. When I designed my ’70 Mustang’s engine (w/dealer installed A/C – which means that the condenser is in front of the radiator) I picked a triple core aluminum radiator for the cooling plant. I want my cars running cool. I have ever had an over heating with the Mustang and that includes trips to the drag strip. When I owned my 84 C4 I avoid the problem as well. One of the major concerns with Corvettes is….well…let me have Steve, one of my two constant readers show you.
Tim,
My vette was running pretty warm about 3 weeks after I bought it. Nice and cool
at highway speeds.
The picture shows what I'm sure is a full 22 years of crap on the radiator.
Runs at normal temps now. Lots and lots of bolts on that fan shroud. Ha Ha.
Steve
Thanks Steve. This is the number one place to first look if your Corvette begins running warm.
Thanks for reading.
Tim
Went back to visit my family in Louisiana this past weekend; I always have a good time when I’m back there. There’s always something new with the family that we’re able to catch up on, or a new eatery that just opened up to check out. Never Trust A Skinny Food Critic blog has the scoop on the places we ate out at. My blog is mostly about cars/photography however and if you’ll remember, I’ve done a post in the past on my brothers ZR1. I had the pleasure of shooting the ZR1 again, but this time the car is vastly more improved and with updated modifications. I’m really impressed by the looks of the car and how the subtle changes really changed the previous stock ZR1. I didn’t get to drive the car this time; my brother was always in a hurry hence the quick photo shoot in the driveway. It’s too bad too because I had a sweet spot picked out in my mind for the shoot. But these things happen and there just wasn’t enough time. I did the best I could though to show the beauty of this ZR1. Hope you guys enjoy.
-RSP-
One of the reason we were in a hurry…see the rain clouds? I thought it would have been kinda cool to do a photo shoot in the rain but my brother wasn’t having it.
I give that ASS 4 thumbs up!!
The door sill reminds you that you’re stepping into a ZR1
I was told it would happen when I upgraded my Mustang from a 6 cylinder to a V8. I was told it would happen when I got my first Corvette (1984 C4 with 205 hp). I was told it would happen when I got my second Corvette (07 C6).
And I was sort of told that numerous years ago by an Air Force pilot. I didn’t believe it each time.
No one can fault me, except some “car purists”, for taking the 250 straight 6 motor from my Mustang and replaced it with a V8 302 bored .030 nor when I attempted to increase the HP in my C4 Corvette from 205 to 245 with a new fangled intake (never actually took place). Those were pretty understandable upgrades considering the 250 in the Mustang had no get up and go (more like lay down and won’t) when the AC was on. For that matter why would ever limit a Corvette to 205 hp?
Now the C4 is gone but the Mustang puts out about 300 hp and the C6 is at about 420. I remember saying, “400 hp? That’s plenty for me!!!” when I bought the C6. And it should be. I’m certain that this SHOULD be ‘true’. But why then, do I have a set of 351 Cleveland Cobra Jet heads sitting in the garage for the Mustang. And why am I pricing superchargers for the Corvette?
I started thinking about this driving the C6 on my way to work today, recalling back when the Mustang was 195 hp and the 84 Vette was just 10 more than the Stang and wishing I had more. As I stepped on the throttle entering the Interstate, I thought to myself, I which I had a bit more power now. That’s just plan crazy talk!!! Just a year ago I was happy with the C6’s power and now its like… yeah its powerful, most powerful in the HOA I bet (why didn’t I just say “neighborhood”?). What happened?
What has happened is that I drive the Vette daily and it as become common place to have that power at a bend of my right ankle. I am sure that if I drove a Toyota Corolla every day and took the Vette out on the weekends, I would still be in awe of the power. I’ve just come so accustom (not complacent, mind you) to driving the car that it doesn’t seem extra ordinary (although intellectually I know that 400 plus hp is no joke).
That doesn’t explain the desire to upgrade the Mustang though, does it? So what does? I think that rational here is more rooted in my own attachment to what the last 60’s and 70’s muscles cars should be. But still when I’m driving it I wish for more power. You understand that don’t you? When you look at a 1969 Mustang and it has its original 6 cylinder in it, you say…”That’s nice. Its all original.” However when you see a 1970 Mustang Mach I with its massive engine…you say…’WOW!!! F-ing A that’s what I’m talking about!!!!” So it’s some of that for sure.
So here is where I am with my cars and thinking about it took me back to one of my military supervisor. He was a LT Col and was one of the few that flew the SR-71 for a living. He shared a story with me about flying a mission and on the return trip received a warning light on the instrument panel. This required him to have to slow the aircraft down bit. He said to me, “…and I thought GREAT it’ll take forever to get home at only Mach 2. I realized how relative speed it was.”
Thanks for reading and keep it under Mach 1. (Yes I’m sure that’s enough power…perhaps.)
Meanwhile, manual-shift enthusiasts are upgrading to modern units packing more heavy-duty horsepower capacity—and more gear ratios.
“The generation that is now in their 60s can afford to build the cars that they wanted to build when they were in high school,” said Dick Hill, sales manager for Centerforce Clutches in Prescott, Arizona. And while those folks are not usually looking to build a race car, “they do want a four- or five-speed manual transmission,” he said.
More surprisingly, the trend extends beyond muscle cars and into traditional hot rods as well.
“I have friends who are building Deuce roadsters and they are putting LS motors in them, with a five- or six-speed manual transmission,” Hill said. “There are people who put Cadillac V-8s in 1949–1951 Mercs, and they want a stick. They want a three-pedal car. So that, too, is contributing to the growth of the high-performance clutch market.”
Hot rodders who already own or have owned multiple cars are now looking for something different.
“It’s like the people who buy their first Harley, they want it with every doo-dad they can get, where older bikers are turning back to the Knucklehead or even Flathead motors,” Hill said. “It’s the same with the hot rodder who already has two or three or four toys in the garage. The newest toy is going to be a stick car. And it’s for the same reason that someone will buy a brand-new Camaro, put 1,000 horsepower in it, and drive it on the street while blowing cold air and playing tunes. They want a manual not because they’re going to race it, but because they can have it. That’s what we hear all the time: ‘Because I can.’”
Rating the Ratios
American Powertrain of Cookeville, Tennessee, sells a broad range of high-performance drivetrain components, from complete crate engines to driveshafts and pedals. The company also distributes Tremec transmissions.
“The hot market right now is for the Magnum six-speed in a classic muscle car,” said Gray Frederick. “The Magnum is Tremec’s replacement for the T-56 is the aftermarket version of what you would get in a new Shelby GT500 or Camaro SS.” Frederick added that people are putting them into classic Mustangs Cougars, Camaros Firebirds, Barracudas and Challengers.
“The cars that people spend the most money on are the cars that [are] getting Magnum six-speeds,” Frederick added.
The Magnum is available with two sets of ratios, with the closer-ratio unit being the more popular of the two.
“The wide-ratio box has a 0.5 overdrive, which is very tall; a lot of engines can’t pull that much overdrive,” Frederick said.
But when it comes to overdrive, isn’t more better?
“That’s a myth,” Frederick said. “You can say, ‘Alright, I’m at the ragged edge of my cam, where if I’m on flat ground I can hold 70 mph all day.’ In a perfect world, that would be great. [I]n the real world, at some point you’re going to have to slow down for construction, and then speed up again; or you’re going to hit a rise, or something else that causes your engine to run out of breath. [T]hen you’re going to have to shift and that’s what you’re trying to avoid.
“You want to put it in sixth gear and leave it sixth gear,” he continued. “You don’t want to run down the highway at your cam’s peak performance, which would be 3,000–4,000 rpm. But you do want an rpm where your engine can pull your car up hills, and pass without dropping a gear. If every time you put your foot in the gas the engine lugs and you have to shift, that becomes very inefficient. We’re helping the customer understand that, even on the highway, you want to stay in your powerband. Otherwise the overdrive doesn’t do you any good.”
Frederick recommends the wide-ratio unit mostly for torquey big blocks.
“A Pontiac 455 will pull a stump out of the ground at 800 rpm; it doesn’t have trouble pulling a car at whatever rpm you’re running,” he said. “A Mopar 440 and some other big blocks with a lot of low-end grunt can usually handle the taller overdrive, too. And of course we’re dealing with a lot of electronically fuel-injected (EFI) engines now, and most of them have computers that can cope with low rpm very well.
They can retard the spark, they can meter the fuel differently, they can do all kinds of things.
“We help the customer choose a rearend ratio and a gear set that’s going to give them the best performance, from top to bottom,” Frederick said.
Pedal Pressure Another concern, according to Hill of Centerforce Clutches, is the physical effort once associated with a high-performance clutch.
“Our customers all ask, ‘How stiff is the pedal?’” he said. “That’s why we’ve been very successful, whether it’s a single-disc clutch for mild upgrade vehicle, or dual-disc unit that can hold 1,300 lbs./ft. of torque, we’ve been very successful in making them streetable.”
The average consumer, Hill said, could climb into a car with a Centerforce dual-disc clutch, push the pedal to the floor, and not realize that the car was modified.
“[T]he person who has a $75,000 Camaro or Corvette wants race-car performance without the race-car effort, so this is pretty significant,” he said.
Still, selecting the optimal clutch for any particular application is a complex task best left to experts.
“There are different linings and different friction materials on the pressure plate,” Hill said. “Heat is a factor. The first thing you have to know is how the vehicle is going to be used. Drag racers realize they are going to drive their car until they break it, where hot rodders don’t beat their cars up as bad. They are very proud of their cars and they want to drive them, not break them. And unless the car has been tubbed, a street machine generally runs smaller tires, so you want to tune the clutch for that.”
McLeod Racing of Placentia, California, offers its RST and RXT Street Twin clutches, both double-disc units that hold up to 1,000 horsepower, with the pedal pressure of a stock clutch, said President Paul Lee. Contributing to this low effort—and to easier installation—are McLeod’s hydraulic release bearings, “which fit most applications, replacing worn and/or outdated mechanical linkages,” he said.
“We’re selling more clutches for vehicles from the 1960s and 1970s, and installing a new hydraulic clutch in one of these cars can significantly reduce pedal effort,” said Rich Barsamian, national sales manager for Advanced Clutch Technology (ACT) in Lancaster, California. The company also offers a wide range of clutches for GM, Ford and Mopar applications, each rated for torque at the crankshaft.
When installing an aftermarket clutch, Barsamian suggested, “be sure to use the right amount of lube on the input shaft—it is possible to use too much. Be sure parts are free from dirt and oil, and washed in a non-petroleum-based cleaner such as acetone, alcohol or brake cleaner. Be sure to follow the correct torque and tightening sequence when installing the clutch cover—and do not use impact tools.”
If you are going to race you need to be safe. Now, I don’t have a roll cage in my cars and I do race them from time to time (on a track or SCCA – not on the street.) but I’m not going to be putting down numbers where you really need one. But still building one is always a “safe” bet. This build is for a C5 Corvette but the principles are the same for any car, even my Mustang.
Most race cars are required to have one. Most street cars don’t. Get on your lid and you’ll wish you had one. It both keeps you safe and keeps your car stiff.
We’re of course talking about roll cages, and in this featured tech piece we’re going to take a look at the in’s and out’s of the basic roll cage, from the materials they’re constructed of, to where you can have one installed, what it will cost you, and what NHRA regulations you need to know before you chop up your prized vehicle and start bending and welding.
To really get a good understanding of the business of roll cages, who better to sit down and chat with than some of the veterans in the industry who make their living building race carchassis and chassis components? Below, you’ll hear from the likes of Chris Alston’s Chassisworks, Wild Rides Race Cars, Alston Race Cars, and Ridetech (for the street and muscle car inclined) as they share their knowledge and experiences in this pseudo beginner’s guide to roll cages.
At the surface, a roll bar and a roll cage are designed to accomplish one very critical goal — to keep the driver safe should they be involved in an accident; particularly a crash that involves the shiny side down. But as chassis builders found early on, there’s more function to that puzzle of bars than just safety, which we’ll get into later. As most of our readers know, a roll bar and a roll cage are not the same thing. Same purpose, different execution.
Shown here is a visual difference between your basic 4-point roll cage and an 8-point roll cage from the Chris Alston’s Chassisworks catalog. The bars shown in blue are optional.
The basic, 4-point roll bar consists of a main hoop behind the driver, two rear struts, and an optional cross brace on the main hoop should you need it or the rules require it. From there, you can go with a 6-point roll bar that includes a driver and passenger side door bar, while an 8-point setup includes a pair of rear-facing side bars for extra support of the main hoop.
Moving on to roll cages, you first get into the 8-point roll cage, which includes a main hoop, cage sides that route along the A-pillar, a windshield brace across the forward section of the roof, a back brace bar, roll cage gussets, and subframe struts. A 10-point cage includes rear struts and commonly an X-bar through those rear struts for torsional support.
Once you go beyond the basics, you start getting into 12-point and 14-point cages and on into full tube chassis cars with Funny Car cages that fall under the SFI 25.X certifications. Today, however, we’re going to focus on your first roll cage — the basics.
NHRA Regulations You Should Know
So even though the rules say you don’t have to run it, we really suggest you put at least an 8-point in any car that’s going to be raced. – Jim Wright
The National Hot Rod Association, the premier governing body in the sport of drag racing, outlines a number of requirements for roll bars and roll cages for racers competing at sanctioned tracks and events the world over, based on elapsed time and, in some cases, on speed.
Vehicles running 11.00 to 11.49 in the 1/4-mile or 7.00 to 7.35 in the 1/8-mile (including those with T-tops), convertibles running 11.00 to 13.49 (7.00 to 8.25), and dune-buggy-type vehicles running 12.00 and slower are required to have a roll bar installed in the vehicle.
Stepping up the performance ladder, a roll cage is mandatory for any vehicle running 10.99 (6.99) or quicker or exceeding 135 mph. In any full-bodied vehicle however that maintains an unaltered firewall, floor, and body running between 10.00 and 10.99 (6.40 and 6.99) a roll bar is permitted in place of a roll cage.
In these two photos, you can see the comparison between a frame and unibody car. On the left is a unibody car with the NHRA mandated 6 x 6 x .125
Despite the regulations, nothing says you can’t overdo your setup and run a full 12- or 14-point cage on a 12-second car. Fact is, you can never be too safe. “Our philosophy has always been that in the case of a rollover, the roll cage that protects the top of the windshield is much stronger and provides a lot more protection,” explains Jim Wright of Chris Alston’s Chassisworks. “So even though the rules say you don’t have to run it, we really suggest you put at least an 8-point in any car that’s going to be raced.”
If you’re working with a car with an OEM frame, the roll bar/cage must be attached to the frame, while in unibody cars (which make up most late model cars), a 6-inch square steel plate measuring 1/8-inch thick must be welded to the floor as a base for each bar that makes its point of contact inside the car. Bolted-in bars require a pair of 6-inch steel plates — one underneath and one above, with four 3/8-inch bolts through the rocker sill to hold the two plates together.
Digging into materials, all tubing has to measure 1-3/4-inch outer diameter, with mild steel .118-inch thickness and chromoly .083-inch. Swing-out side bars, popular for many cars that will be driven on the street and climbed in and out of, are permitted on cars running 8.50 and slower, with a number of caveats in terms of the clevis, bolts/pins, and more.
The NHRA, in conjunction with the SFI Foundation, has put in place mandates for welding processes that must be used on both mild steel and chromoly. As well, plating and grinding of the welds is expressly prohibited.
All roll bars/cages constructed of 4130 chromoly tubing must be welded using an approve TIG heliarc process, while mild steel must be done with an approved MIG wire feed or TIG heliarc process. Grinding and plating of the welds is prohibited, so keep these points in mind if you’re a do-it-yourselfer.
The 2012 NHRA Rulebook has 12 pages in the General Regulations section that pertain to frame requirements, which is far more than we could ever outline here in detail. If you’re considering building a roll bar/cage yourself, we’d suggest if you’re not already an NHRA member, to either get yourself signed up or pick up a copy of the NHRA Rulebook, which is available for $10 from the NHRA Store online.
Moly Versus Mild
Your choice of material for a roll bar/cage comes down to one of two options: mild steel or chromoly. Each one, when built within the specifications of the NHRA rulebook, offers the same amount of strength and protection. What it really boils down to then is a tradeoff between cost and speed. How fast do you want to go?
The Weight Debate
By nature and pound for pound, chromoly is a stronger material than mild steel, and that allows for chromoly to be a thinner wall tubing (.083″ compared to .113″). This gives chromoly a distinct advantage in terms of weight, but that advantage comes at a cost that customers must weigh (no pun intended) before they build.
Mild steel is far less expensive than chromoly, but comes with the disadvantage of more weight. For the grass roots racer on a budget that we’re targeting here, that cost versus weight decision can be a big one.
“The only reason to use chromoly is if you’re building something that the class requires it or if weight is a real big factor, because it will be lighter,” explains Wright. “Technically they’re the same strength, and chromoly is an upgraded material that will certainly save you some weight, but 99-percent of people buy the mild steel because of the price.”
For comparisons sake, using a 12-point roll cage from Chassisworks as an example, the mild steel version will tip the scales about 50-60 pounds heavier than the chromoly, according to Wright, but is nearly double the price.
As pointed out above in the NHRA regulations, the minimum wall thickness on mild steel is more than that of chromoly to achieve the same result, and that is because, by nature, chromoly offers more strength pound-for-pound, so to speak.
“Some people say ‘well chromoly is stronger’, and it is stronger on its own, if you took equal tubing of the same wall thickness and tested them side-by-side, but they’re allowing you to run a thinner wall thickness with chromoly to save some weight and still equal the same structure, strength-wise,” explains Gene Giroud of Wild Rides Race Cars.
Two Birds With One Stone
The primary means of a roll bar or cage is to protect the driver, but barring such an incident, those bars will serve a daily purpose of stiffening the entire vehicle up and creating less body roll and twist. Each bar added to a roll cage adds another dimension of structural support and rigidity. For example, the X-brace shown here is not only stronger than the straight rear struts, but also provides added torsional strength to the car. The downside, however, is that the X-bar essentially eliminates your back seat.
The benefit of a roll cage is really two-fold. It’s designed to protect you first and foremost, but the every day bonus to the existence of a roll cage is improved stiffness of the vehicle, and that’s a big plus for drag racers planting the tires to the ground.
“On the surface, the primary purpose of a roll cage is crash protection, but in reality, you only use the cage in that context one time,” explains Bret Voelkel of RideTech. “But every time you start the car and drive it, the roll cage offers a lot of structural and torsional strength, and that gets applied every time you use the car.”
On the surface, the primary purpose of a roll cage is crash protection, but in reality, you only use the cage in that context one time. – Bret Voelkel
Adding more bars to a roll bar/cage not only adds to the structural integrity from a safety standpoint, but each additional bars presents more rigidity to the chassis.
“The more points you put in the car, the stiffer the platform of the car is going to be. And if you put an “X” in it for example, that’s going to make it even stronger,” says Mike Ruth of Alston Race Cars. “And the more horsepower and torque you have, and the better ‘bite’ the car gets, the more it’s going to try twisting on the launch, so more bars you add the more rigid the chassis will be.” By maintaining that stiffness within the body and chassis, the shock and suspension tuning adjustments that you make will deliver results you can truly see.
Buying A Cage For The Street Versus The Strip
Something to keep in mind when you’re in the market for a roll cage is the fact that what’s designed to save your life in a dedicated race car isn’t necessarily optimum for a car that spends all or most of its life on the street. Most chassis builder, including those we spoke with in this article, generally build their roll bars/cages to NHRA specifications regardless, but these chassis builder also know there are safety discrepancies between a street and a race car.
What’s designed to keep you safe on the track can be your worst enemy on the street. Imagine getting broadsided and striking the cage seen here without a helmet on. For this reason, many chassis builders will shy a customer away from a full roll cage if the primary use of the vehicle is street driving.
Said Giroud, “The roll cage that’s designed to save your life on the track is meant for an environment where you’re using proper safety gear — a helmet, harnesses, and everything else. You don’t want to put a person in unsafe situation by putting too many bars in it, because it presents what I would consider a more unsafe situation than too few bars on a race car. You don’t want to put a bar by the drivers head and then they get broadsided and hit their head on that bar and not have a helmet on. What’s there to save your life at the track can be your worst enemy on the street.” There’s no specific rule of thumb for track versus street split time, but if you’re doing a considerable amount of street driving, a roll bar might be your best, and safest, bet.
This Ain’t The Zoo’s Tiger Cage
Though not currently NHRA legal, RideTech offers a bolt-in, stainless steel roll cage known as the Tiger Cage that’s easy to install and form-fits a number of specific and popular early and late model muscle cars. Shown here is the complete Tiger Cage system, with a seat brace bar and door bars.
For the muscle car crowd amongst us or for those looking for affordable and easy-to-install alternatives to the weld-in roll cage, the folks at RideTech offer their Tiger Cage stainless steel roll cage system. These bolt-in cages are pre-engineered and designed for specific makes and models, with patented clamp collar components that tie the cage to the structure of the car for safety and rigidity. And the best part is, you can install these at home in 4-6 hours using just three simple tools found in any basic toolbox. “The Tiger Cage is basically a modular, bolt-in, stainless roll cage system for muscle cars,” says Voelkel.
Here, you can see the clamping system used to hold the Tiger Cage together. Although geared toward the muscle car and street crowd, this kit is in fact NHRA-legal for cars running 10.99 and slower.
“We used stainless for a number of reasons,” continued Voelkel. “Beyond the aesthetic benefits of it, you don’t have to paint it or worry about scratching the paint. The stainless that we used actually has a higher tensile strength than mild steel and approaches that of chromoly.”
The Tiger Cage is sold in modules, beginning with a base 4-point roll bar containing a main hoop and two rear struts that will allow you to retain the back seat. Additions that include a door bar that are situated down low on the door can also be added for more structural support. Tiger Cage’s are currently available for 2005 and later Mustangs, ’67-69, ’70-73, and ’74-81 Camaros, as well as ’64-67 and ’68-72 GM A-Bodies and ’68-74 Novas.
How Do You Find A Good, Quality Chassis Shop?
The world wide web and magazines are your friend. Publications like National Dragster feature extensive ads for chassis builders and chassis manufacturers, and the use of web search engines like Google and Bing will turn up plenty of builders in your area.
But chances are you don’t buy many things without trying them out first, or at the very least, finding out everything you can about the product beforehand. And the same applies to a roll bar/cage. So, if you really want to find a good, quality chassis man in your area, the best thing you can do is to visit the local track, take a look at some of the cars, and ask questions.
Here, you can see a number of different roll cages installed in a variety of cars out of the Alston Race Cars shop. In addition to complete in-house chassis service, Alston also sells complete roll cage kits that are ready to notch and weld.
“Without a doubt, going to the track and talking to people and asking who did their chassis or cage is the best way to go about it,” says Giroud. “If you see something you like, you can ask who did it, and how their experience was. Word of mouth is the best way.” After you’ve talked to the racers and asked the questions you’d like to ask, a visit to the chassis shop will often give you tell-tale signs of the service you’ll get.
“I always tell customers to come to our shop, and then visit some others, and make a mental note of the cars that are in their shops, and then go back three weeks later and see how much work has been done to those cars. If they’re covered in dust and in the same condition as the last time, chances are your car is going to sit a while,” says Ruth.
Manufacturers like Chassisworks, which make and sell components but don’t construct/install them, do have networks of chassis shops that use their products around the country, and in the example of Chassisworks, Wright relayed to us that they can generally find a customer a shop within 100 miles of their location. But again, the rule applies that asking questions at the track is always best case. With decreased racing budgets and an influx of tools commonly used by chassis shops more readily available these days, many racers today are taking on the project themselves in their own garages in increasing numbers.
With easy and affordable access to tools used by chassis builders these days, more and more people are going the DIY route for installation of their roll cages. Alston Race Cars’ Mike Ruth cited a $49 tubing notcher available at Harbor Freight as a prime example of a tool plenty capable of doing the job at home.
According to Ruth, the DIY route has become more popular for entry-level customers looking for a roll bar/cage. “Our pre-bent roll cages come with great instructions, and it’s really not that difficult to install a roll cage,” says Ruth. “The average guy that’s out there hot rodding has used carpenter tools and knows what a level and all that is. You can buy a very inexpensive tubing notcher that hooks to a drill press and after a few cuts, you could make a cut as good as anybody.”
What Should You Pay?
The cost to have a roll bar/cage varies widely from region to region, and a lot depends on which shop you have it done at. A one-man band that does chassis work in his sop on the side may be much cheaper than a full-time shop with dedicated welders and fabricators, with overhead costs and insurance. But don’t be fooled by presentation, as there are countless part-time chassis guys out there that do exceptional craftsmanship.
As Wild Rides Race Cars’ Gene Giroud stated, I always tell people to keep in mind they’re not buying tires here, so don’t go price shopping.” The craftsmanship and level of service you’ll recieve will always play a pivotal role in how much you’ll pay for a roll cage, and as always, keep in mind that you do in fact get what you pay for. Seen here is a roll bar with a swing-out drivers door bar in a ’55 Chevy out of the Alston Race Cars shop.
Like anything else, you get what you pay for in a roll bar/cage. Go to the track, check out the quality of the work you see, and compare prices amongst those shops. The ones that charge more may not always deliver the better product, and vice versa, the cheap shops aren’t necessarily rolling shoddy jobs out, either.
“I always tell people to keep in mind they’re not buying tires here, so don’t go price shopping,” says Giroud. “You don’t get the same product from everyone.”
Whether you’re on the hunt for a quality chassis shop to install your roll cage or you’re diving into the project yourself, the best thing you can do for yourself is take the time to do your homework. Consider how you’ll use the vehicle, both now and several years down the road. Weigh the cost versus weight debate, and decide what meets your needs. Again, the primary goal here should be keeping you safe regardless of your driving habits, and remember, you can never be too safe.